Problem 25

During heavy rain, a section of a mountainside measuring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m deep slips into a valley in a mud slide. Assume that the mud ends up uniformly distributed over a surface area of the valley measuring $0.40 \mathrm{~km} \times 0.40 \mathrm{~km}$ and that mud has a density of $1900 \mathrm{~kg} / \mathrm{m}^{3}$. What is the mass of the mud sitting above a $4.0 \mathrm{~m}^{2}$ area of the valley floor?

Solution

Multiply the density by the volume of the mountainside section to get the mass of mud.

$$
m=\rho V=\frac{1900 \mathrm{~kg}}{1 \mathrm{~m}^{3}} \times\left(2.5 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(0.80 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)(2.0 \mathrm{mq})=7.6 \times 10^{9} \mathrm{~kg}
$$

Divide this mass by the surface area of the valley to get the mass per unit surface area.

$$
\frac{m}{A}=\frac{7.6 \times 10^{9} \mathrm{~kg}}{\left(0.40 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(0.40 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)} \approx 4.8 \times 10^{4} \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

Multiply this mass per unit surface area by $4.0 \mathrm{~m}^{2}$ to get the mass of mud on this surface area.

$$
4.0 \not \text { K }^{\text {K }} \times \frac{7.6 \times 10^{9} \mathrm{~kg}}{\left(0.40 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(0.40 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)}=1.9 \times 10^{5} \mathrm{~kg}
$$

